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= 2 3H: MDD (Mispronunciation Detection and Diagnosis) Problem

= Error Detection and Corrective Feedback Generation Problem
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Pronunciation of "=2}= 4 Qlo{R"

The pronunciation of "=2}& 4= J0{R"

is [EAERAMR]. """ of "-(2)2 £ Y

0{R" is pronounced as [#*].

Pronunciation of "& & H&"

The pronunciation of "#8 H&" is [HI S A &].
Ifthereis afinal consonant "o, ,or©"ina
previous word, and if the following word
begins with "0, 0}, &, 2, or &," the [ | is

inserted in between to pronounce.

Sure. What can | help you with?

This is the word you are

learni

ng. See the

pronunciation, meaning,
and graphic aid.

BE

i

or

L pract|ce
. /\

Accuracy:

Speed:

Practice pronouncing the
word by listening,recording,
playback, and comparing.

Accuracy:

Speed:

¢ B

o o~
o e

Accuracy: 62% Speed: 79%
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HARE 7|8t Y617 XS "7} Al ETS's SpeechRater

Fluency
= ETS SpeechRater belivery | Lo
T Rhythm
= SpeechRater Version 1 (20006) —————
« TOEFP Practice Online A= XA Dverstty
Vocabulary — Sophistication
= SpeechRater Version 5 (2019) ——
Language reclsion
« TOEFL iBT X £ & A%} Use
Range
« Combination of human and \ pen—— ([ comionicy
machine scores Accuracy
/////, Coherence
Topic .
T et Idea progression
Content relevance

Figure 4. The construct of speech for the TOEFL Internet-based test represented by the

scoring rubric.

ETS Research Report ETS-RR-08-62: Automated Scoring of Spontaneous Speech Using SpeechRater v1.0, Nov. 2008.
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= Speech Proficiency At& B710]| AHEE EF

Table 2: Speaking Proficiency Features Extracted by SpeechRater

Category Sub-category # of Fea- | Example Features
tures
Fluency 24 This category includes features based on the number of words per sec-
Prosody ond, number of words per chunk, number of silences, average duration

of silences, frequency of long pauses (> 0.5 sec.), number of filled
pauses (uh and wm). See [ 14] for detailed descriptions of these features.
Intonation & Stress 11 This category includes basic descriptive statistics (mean, minimum,
maximum, range, standard deviation) for the pitch and power measure-
ments for the utterance.

Rhythm 26 This category includes features based on the distribution of prosodic
events (promincences and boundary tones) in an utierance as detected
by a statistical classifier (overall percentages of prosodic events, mean
distance between events, mean deviation of distance between events)
[14] as well as features based on the distribution of vowel, conso-
nant, and syllable durations (overall percentages, standard deviation,
and Pairwise Variability Index) [15].

Pronunciation Likihood-based 8 This category includes features based on the acoustic model likelihood
scores generated during forced alignment with a native speaker acoustic
model [16].

This category includes two features based on the ASR confidence score:
the average word-level confidence score and the time-weighted average
word-level confidence score | ITI'I.

Duration 1 This category includes a feature that measures the average difference
between the vowel durations in the utterance and vowel-specific means
based on a corpus of native speech [16].

Grammar Location of Disfluencies | 6 This category includes features based on the frequency of between-
clause silences and edit disfluencies compared to within-clause silences
and edit disfluencies | 18].[19].

This category includes two scores based on MFCC features that assess
the probability that the audio file has audio quality problems or does not
contain speech input [20].

Confidence-based

o

Audio Quality B

o)

ETS Research Report ETS-RR-18-10: Automated Scoring of Nonnative Speech Using the SpeechRater v5.0 Engine, Dec. 2018.



2ol7] XS H7t AEl: ETS's SpeechRater

>~

=
18l £

Feature name

Construct area

Description

Speaking Rate
Sustained Speech
Pause Frequency
Repetitions
Vowels

Rhythm

Vocabulary depth

Delivery-Fluency

Delivery-Fluency

Delivery-Fluency
Delivery-Fluency

Delivery-Pronunciation

Delivery-Pronunciation

Words per second

Number of words without
disfluencies

Pauses per word
Number of repetitions

Vowel sounds compared to a
native speaker model

Stressed syliables

Language Use-Vocabulary Use of infrequent words

ETS Research Report ETS-RR-18-10 : Automated Scoring of Nonnative Speech Using the SpeechRater v5.0 Engine, Dec. 2018.

13



Research Trends on CAPT

Pronunciation Scoring and Mispronunciation Detection and Diagnosis (MDD) is an

indispensable component of the CAPT system, as it provides an instant feedback to the

users.

= Traditional methods for automatic pronunciation assessment

= Based on Automatic Speech Recognition (ASR)
= Features extracted from the Hidden Markov Models (HMMs) of ASR system

« HMM likelihood, posterior probability, pronunciation duration features
« a variation of the posterior probability, or Goodness of Pronunciation (GOP)

* GOP optimized based on Deep Neural Networks (DNNs)

= Accuracy of the assessment depends on these manually-engineered features.

14



Previous Studies on CAPT

= GOP (Goodness of Pronunciation)
= GOP is the most famous method among traditional scoring methods
- P(p|op): posterior probability of phoneme p given pronunciation o
= NF(p): the number of pronunciation frames of phoneme p

= Phonemes of an utterance are forced-aligned using Kaldi ASR system

P(o”|p)P(p)

|1og(P(p|0p)| log (5= qeq P(olla)P(q)

)|

COP®) = =F () NF()

15



Previous Studies on CAPT

= GOP (Goodness of Pronunciation)
= Steps of GOP:
- processes forced alignment b/t canonical phone sequence (p) and audio signal (o)
- computes the likelihood of P(p|oP) given the alignment information
- classifies the phoneme as a mispronunciation if the likelihood does not exceed a pre-defined
threshold

- GOP of a phoneme is normalized by duration (frames)
= GOP-like phoneme posteriorgrams are mainly based on DNN-HMM

= Disadvantages
- No thorough mispronunciation diagnosis

- Manual and discretized steps

16



Previous Studies on CAPT

= Extended Recognition Network

utilizes phonological rules to derive mispronunciation patterns — formulate ERN
drawbacks
- no guarantee whether all mispronunciation possibilities from all language learners are covered

- overly bushy recognition network — lower performance on AM models

=  Solutions

All possible alternative phones are considered ( = all possible mispronunciations are covered )
State-level Acoustic Model (S-AM)
Acoustic-Phonemic Model (APM)
Acoustic-Graphemic Model (AGM)
Acoustic-Phonemic-Graphemic Model (APGM)

Figure 3: Extended recognition network of “north”

sunau,-m,-u

Figure 2: Standard recognition network of “north” 17



Recent Studies on CAPT

= E2E-based CAPT System

annotation

)

L1, L2 Corpus

(mispronunciation
annotation)

annotation

)

L2 Corpus

— { E2E-based ASR model ]

— [ E2E-based ASR model ]

Decision

function

Training

Testing

18



Recent Studies on MDD for CAPT

Title Conferences Model Features Dataset & Performance
CU-CHLOE
CNN-RNN-CTC based E2E MDD ICASSP 2019 CNN-RNN-CTC Spectrogram - PER 12.07%
- F1 74.62%
SED-MDD: Towards sentence dependent E ICASSP 2020 CNN-RNN + Attention-GRU s | Character embeddings L2-ARCTIC

2E MDD

equential labeling

Mel-spectrogram

- PER 13.65%

E2E MDD for L2 English Speech . . , L2-ARCTIC
Leveraging Novel Anti-Phone Modeling Interspeech 2020 Hybrid CTC-Attention Mel-filter-bank " F1 56.00%
CU-CHLOE
Transformer based E2E MDD Interspeech 2021 wav2vec 2.0 Raw wave input - PER 5.97%
- F1 80.98%
: : L2-ARCTIC
Exploring non-autoregressive E2E neural m ICASSP 2022 ConformerEncoder-CTC- Mel-filter-bank _ PER 22.6%
odeling for English MDD TransformerDecoder
- F1 67.19%
ASR-based pretraining + MD L2-ARCTIC
Approach to MDD with acoustic, phonetic ICASSP 2022 D APL fine-tuning Mel-filter-bank _ PER 16.96%
and linguistic (APL) embeddings CNN-RNN-Attention Encoder | Phonetic embeddings o
Decoder - F1 53.62%
wav2vec 2.0 acoustic encoder
- . : acoustic-phonemic attention | Raw wave input L2-ARCTIC
Phoneme MD by jointly learning to align ICASSP 2022 + CNN Canonical phonemes _ F1 63.04%

Multitask Learning (MTL)

19



Recent Studies on CAPT

= Dataset
= [ 2-ARCTIC is the most used (TIMIT dataset is employed for L1 fine-tuning) L2 dataset
= For Chinese-native’s L2 English utterances, CU-CHLOE is chosen

= Acoustic Features
= Spectrogram-based, FBANK-based acoustic features are given as input

= |n case of using wav2vec 2.0 as AM, raw waveform is used as input

= Model Evaluation Metrics
= Phone Error Rate

= F1 score (with Precision and Recall score provided as well)

20



Recent Studies on CAPT

= Models

= Development of neural network led to the era of end-to-end (E2E) ASR model for MDD tasks.

= Recent studies utilize ASR paradigms such as

Connectionist Temporal Classification (CTC) alignment (Leung et al, 2019: CNN-RNN-CTC BASED END-TO-
END MISPRONUNCIATION DETECTION AND DIAGNOSIS)

Attention-based (ATT) method (Lin et a 2022; PHONEME MISPRONUNCIATION DETECTION BY JOINTLY L
EARNING TO ALIGN)

A hybrid CTC-ATT method (Zhang et al, 2020; End-to-End Automatic Pronunciation Error Detection Based
on Improved Hybrid CTC/Attention Architecture)

Pretrained models are used with fine-tuning to bring better performance (Baevski et al, 2020, wav2vec 2.

0: A Framework for Self-Supervised Learning of Speech Representations)

21



Recent Studies on CAPT

The Disadvantages of E2E Models

As the task relies on ASR performance, it follows the disadvantages of E2E models.

When training with custom ASR models, mispronunciation labels should be included in the
dictionary beforehand.

Slow inference speed due to the autoregressive manner of deep neural models.

Although named ‘end-to-end’, to get high-level results, manually engineered features are

sometimes still needed.

Lack of task related data: a serious lack of annotated L2 data for deep learning training.

22



Recent Studies on CAPT: Other Issues

The impact of forced alignment in L2 speech recognition

GOP score (the most common pronunciation assessment algorithm) is computed using phoneme
level posterior probabilities estimated using GMM-HMM or DNN-HMM-based acoustic model.
While computing the GOP, the target phoneme boundaries are located using a forced-alignment
algorithm. Other (classification-based) pronunciation assessment systems similarly rely on forced
alignment.

For both systems, forced-alignment errors can have downstream consequences.

Susceptibility to error particularly increases when used on atypical speech due to acoustic

mismatch between the utterance and the acoustic model.

23



Recent Studies on CAPT: Other Issues

ASR vs. MDD

MDD needs to catch all the speech variation as is, whereas ASR needs to map all the speech

variation to the canonical phoneme (the goal discordance between MDD and ASR).

Wav2vec2-base-960h produces higher precision but lower recall than wav2vec2-base in Yang
et al, 2022 — more tolerant judge by rejecting less L2 pronunciations; makes sense given the

goal of ASR

The same result appears in Ye et a| 2022, with larger model having higher precision but lower
recall — with a deeper model trained on a larger dataset, the model is noise-tolerant and

speaker-normalized but may lose some useful information for MDD.
Over-robustness of the ASR pretrained features may not be desirable for MDD tasks!

How we can overcome such tendency is another key issue.

24
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E{l0] =: Montreal Forced Aligner

\ Montreal Forced Aligner

£ DigitalOcean

Digital Ocean: Create your world-changing
apps on the cloud developers love Try now
with a $100 Credit

Ad by EthicalAds - Host these ads

Getting started User guide APl reference Changelog Pretrained MFA modelsiZ

Montreal Forced Aligner documentation

L )

Getting started

Install the Montreal Forced Aligner and get
started with examples and tutorials.

User guide

The User Guide gives more details on input
formats, available commands, and details on the
various workflows available.

First steps

Have a particular use case for MFA?

Check out the first steps tutorials.

A

API reference

The API guide lists all the inner workings of MFA,
the modules and classes that you can import and
use in your own scripts and projects, along with
details about the Kaldi functionality used.

Reference guide

https://montreal-forced-aligner.readthedocs.io/en/latest/
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E{l0] =: Montreal Forced Aligner

Montreal Forced Aligner Models

A?, (IA')

Dictionaries Grapheme-to-phoneme models

Pronunciation dictionaries for use with MFA G2P models can supplement dictionaries with

new pronunciations

& Alx

Acoustic models Language models
Pretrained acoustic models trained on ASR Language models alongside the acoustic models
corpora
Browse acoustic models Browse language models

Next
Pronunciation dictionaries

https://mfa-models.readthedocs.io/en/latest/
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A E2QJ0| =: Montreal Forced Aligner for Korean

= Dictionaries Korean
Show entries Columns | ‘ Copy | | Excel | ‘ PDF | Search:
1D *  Language Dialect Phoneset License
Korean (Jamo) MFA dictionary v2_0_0 Korean Jamo MFA CCBY 4.0
Korean MFA dictionary v2_0_0 Korean N/A MFA CCBY 4.0
Korean MFA dictionary v2_0_0Oa Korean N/A MFA CCBY 4.0
Showing 1 to 3 of 3 entries Previous ‘I‘ Next
Korean
| G 2 P M Od e | S Show entries Columns ‘ ‘ Copy ‘ ‘ Excel ‘ ‘ PDF ‘ Search:
ID *  Language Dialect Phoneset License
Korean (Jamo) MFA G2P model v2_0_0 Korean Jamo MFA CCBY 4.0
Korean (Jamo) MFA G2P model v2_0_0a Korean Jamo MFA CCBY 4.0
Korean MFA G2P model v2_0 0 Korean N/A MFA CCBY 4.0
Korean MFA G2P model v2_0_0Oa Korean N/A MFA CCBY 4.0
Showing 1 to 4 of 4 entries Previous ‘I‘ Next




ATEQON E:

Acoustic Models

Language Models

Montreal Forced Aligner for

Korean

ShOW entries Columns ‘ ‘ Copy ‘ ‘ Excel ‘ ‘ PDF ‘ Search:

ID “*  Language Dialect Phoneset License
Korean MFA acoustic model v2_0_0 Korean N/A MFA CCBY 4.0
Korean MFA acoustic model v2_0_Oa Korean N/A MFA CCBY 4.0

Showing 1 to 2 of 2 entries Previous ‘ 1 ‘ Next
ShOW entries Columns ‘ ‘ Copy ‘ ‘ Excel ‘ ‘ PDF ‘ Search:

ID *  Language Dialect License

Korean language model v2_0_Oa Korean N/A CCBY 4.0

Showing 1 to 1 of 1 entries

Previous ‘ 1 ‘ Next
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Benchmarks

Corpora

E2IX =: Montreal Forced Aligner for Korean

Korean alignment benchmarks

Dataset

The dataset used for this benchmark is the Seoul Corpus. The Seoul Corpus was modeled off of the Buckeye Corpus to
create a phonetically/phonemically hand-aligned corpus of Seoul Korean. The corpus consists of 40 speakers of Seoul
Korean with 20 male speakers and 20 female speakers, along with 10 speakers each in their teens, twenties, thirties and
forties. Similar to the Buckeye Corpus, socio-economic class was also not controlled, but the setting of academic
sociolinguistic interviews will bias towards middle to upper class.

The corpus was transribed in Hangul and aligned in HTK, and then corrected by hand. The transcription is more
phonemic than the Buckeye Corpus’s phone set (though, even the final Buckeye phone set is not as as phonetic as the

original TIMIT-based set they used).

The dataset is freely available on OpenSLR. The reorganization script here is the basis of the testing data, and creates
input TextGrids to align and reference textgrids to compare against in the alignment evaluation script, along with the

necessary mapping files to the Seoul Corpus phone set from MFA's phone set and GlobalPhone's phone set.

Korean
Show entries Columns ‘ ‘ Copy ‘ ‘ Excel ‘ ‘ PDF ‘ Search:

ID “  Language Dialect License
Deeply Korean read speech corpus public Korean N/A CC BY-NC-ND
sample 4.0
GlobalPhone Korean v3_1 Korean N/A ELRA
Pansori TEDxKR Korean N/A CC BY-NC-ND

4.0
Seoul Corpus Korean N/A CCBY-NC 2.0
Zeroth Korean Korean N/A CCBY 4.0
Showing 110 5 of 5 entries Previous ‘I‘ Next
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